
Problem 1 FP8 Groupwise GEMM

The edge between traditional “quantizationˮ and low-precision operators lies 
at the float8 datatype. In this problem, you will be implementing and 
optimizing a W8A8 grouped generalized matrix multiplication GEMM kernel 
with   block-wise scaling factors. In this problem, you are not 
implementing the standard BLAS GEMM, so pay close attention to the 
instructions below. We describe the problem below to avoid any ambiguity 
regarding the problem.

The input matrices are in NT (non-transposed) format.

You will only need to compute   with proper scaling factors, and you 
will store to an output matrix that is already allocated on-device.

The matrices will be in FP8, the scale factors in FP32, and the 
accumulator / final output in BF16.

All input tensors will start in on-device memory HBM / DRAM.

Constants / shapes are guaranteed to divide 128.

Formally, given:

A set of constants  .

a random FP8 e4m3) input tensor   stored in column-major 
order.

a random FP8 e4m3) input tensor   stored in column-major 
order.

a zero-initialized BF16 e8m7) accumulator tensor  

The scaling factors are applied as unique scalars to every 1128-block chunk 
in the rows of   and every 128128-block chunk in  . So the

LHS scaling factor tensor   stored in column-major 
order.
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RHS scaling factor tensor   stored in column-major 
order.

All of these tensors will start in on-device memory HBM / DRAM, and you 
will compute 

The explanation above might be a little confusing (the block-wise scaling is 
really nice when doing tiled matrix multiplication), so below is an illustration of 
how the LHS and RHS scalars broadcast and multiply (elementwise) with the 
input matrices:

Figure 1 (by the amazing Shekhar from AMD!. We show how the LHS (alpha) 
and RHS (beta) scaling factors are multiplied elementwise into   and   
respectively. Each element in alpha maps to a 1128 chunk in  , while each 
element in beta maps to a 128128 chunk in  !
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Code Version. If you like reading code better, you are essentially writing a 
ROCm kernel for:

# Defaults to ROCm if AMD GPU available.
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
BLOCK_K  128
BLOCK_N  128

# Example of FP8 (e4m3 matrices
A  torch.randn(M, K, dtype=torch.float8_e4m3fnuz, device=device)
B  torch.randn(N, K, dtype=torch.float8_e4m3fnuz, device=device)
lhs = torch.randn(M, K // BLOCK_K, dtype=torch.float32, device=device)
rhs = torch.randn(N // BLOCK_N, K // BLOCK_K, 

dtype=torch.float32, device=device)
C  torch.randn(M, N, dtype=torch.bfloat16, device=device)

# You will be implementing this kernel. 
# The inputs will be wrapped in a tuple argument called "data".
def kernel(A torch.Tensor,    # M, K 

 B torch.Tensor,    # N, K
 C torch.Tensor,    # M, N
 lhs: torch.Tensor,  # M, K // 128
 rhs: torch.Tensor): # [N // 128, K // 128  

  # Constants
  m = a.shape[0]
  n = b.shape[0]
  k = a.shape[1]
  scale_n = rhs.shape[0]
  scale_k = rhs.shape[1]

  # Apply scaling to input 'a'
  # Shape: [m, scale_k, BLOCK_K
  lhs = lhs.unsqueeze(-1).repeat(1, 1, BLOCK_K  
  lhs = lhs.reshape(m, scale_k * BLOCK_K 
  lhs = lhs[:, :k] # If k doesn't cleanly divide 128
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  # Apply scaling to input 'b'
  rhs = (
      rhs.view(-1, 1
      .repeat(1, BLOCK_N * BLOCK_K
      .view(scale_n, scale_k, BLOCK_N, BLOCK_K
      # Reorder dimensions: [scale_n, blk_n, scale_k, blk_k]
      .permute(0, 2, 1, 3
      .reshape(scale_n * BLOCK_N, scale_k * BLOCK_K
  )
  rhs = rhs[:n, :k]
  
  # Compute matmul
  C  (torch.matmul(

  lhs * A.to(torch.float32, 
  B.T.to(torch.float32 * rhs
).to(torch.bfloat16

return C

Note. In the example above, the tensors are row-major order, but all tensors 
including the scale factors (see the reference code for more detail) will be 
provided in the NT format, so column major order (e.g. M x K, N x K column-
major). 

Problem Constraints and Scoring:

The ranking criteria is the geometric mean of the benchmark results. For the 
grand prize, your kernel will be evaluated against the speed of light analysis
and the solution closest to the speed of light will be awarded the grand price.

The speed of light numbers provided by AMD are:

M N K time[μs]

1024 1536 7168 8.6331019

1024 4608 7168 25.8936898

6144 1536 7168 51.7775517
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6144 4608 7168 155.2989590

1024 7168 256 3.1671426

6144 7168 256 17.2712935

Problem shapes: 
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