
Problem 1 FP8 Groupwise GEMM

The edge between traditional “quantizationˮ and low-precision operators lies
at the float8 datatype. In this problem, you will be implementing and
optimizing a W8A8 grouped generalized matrix multiplication GEMM kernel
with block-wise scaling factors. In this problem, you are not
implementing the standard BLAS GEMM, so pay close attention to the
instructions below. We describe the problem below to avoid any ambiguity
regarding the problem.

The input matrices are in NT (non-transposed) format.

You will only need to compute with proper scaling factors, and you
will store to an output matrix that is already allocated on-device.

The matrices will be in FP8, the scale factors in FP32, and the
accumulator / final output in BF16.

All input tensors will start in on-device memory HBM / DRAM.

Constants / shapes are guaranteed to divide 128.

Formally, given:

A set of constants .

a random FP8 e4m3) input tensor stored in column-major
order.

a random FP8 e4m3) input tensor stored in column-major
order.

a zero-initialized BF16 e8m7) accumulator tensor

The scaling factors are applied as unique scalars to every 1128-block chunk
in the rows of and every 128128-block chunk in . So the

LHS scaling factor tensor stored in column-major
order.

Untitled 2

RHS scaling factor tensor stored in column-major
order.

All of these tensors will start in on-device memory HBM / DRAM, and you
will compute

The explanation above might be a little confusing (the block-wise scaling is
really nice when doing tiled matrix multiplication), so below is an illustration of
how the LHS and RHS scalars broadcast and multiply (elementwise) with the
input matrices:

Figure 1 (by the amazing Shekhar from AMD!. We show how the LHS (alpha)
and RHS (beta) scaling factors are multiplied elementwise into and
respectively. Each element in alpha maps to a 1128 chunk in , while each
element in beta maps to a 128128 chunk in !

Untitled 3

Code Version. If you like reading code better, you are essentially writing a
ROCm kernel for:

Defaults to ROCm if AMD GPU available.
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
BLOCK_K  128
BLOCK_N  128

Example of FP8 (e4m3 matrices
A  torch.randn(M, K, dtype=torch.float8_e4m3fnuz, device=device)
B  torch.randn(N, K, dtype=torch.float8_e4m3fnuz, device=device)
lhs = torch.randn(M, K // BLOCK_K, dtype=torch.float32, device=device)
rhs = torch.randn(N // BLOCK_N, K // BLOCK_K,

dtype=torch.float32, device=device)
C  torch.randn(M, N, dtype=torch.bfloat16, device=device)

You will be implementing this kernel.
The inputs will be wrapped in a tuple argument called "data".
def kernel(A torch.Tensor, # M, K

 B torch.Tensor, # N, K
 C torch.Tensor, # M, N
 lhs: torch.Tensor, # M, K // 128
 rhs: torch.Tensor): # [N // 128, K // 128

 # Constants
 m = a.shape[0]
 n = b.shape[0]
 k = a.shape[1]
 scale_n = rhs.shape[0]
 scale_k = rhs.shape[1]

 # Apply scaling to input 'a'
 # Shape: [m, scale_k, BLOCK_K
 lhs = lhs.unsqueeze(-1).repeat(1, 1, BLOCK_K
 lhs = lhs.reshape(m, scale_k * BLOCK_K
 lhs = lhs[:, :k] # If k doesn't cleanly divide 128

Untitled 4

 # Apply scaling to input 'b'
 rhs = (
 rhs.view(-1, 1
 .repeat(1, BLOCK_N * BLOCK_K
 .view(scale_n, scale_k, BLOCK_N, BLOCK_K
 # Reorder dimensions: [scale_n, blk_n, scale_k, blk_k]
 .permute(0, 2, 1, 3
 .reshape(scale_n * BLOCK_N, scale_k * BLOCK_K
)
 rhs = rhs[:n, :k]

 # Compute matmul
 C  (torch.matmul(

 lhs * A.to(torch.float32,
 B.T.to(torch.float32 * rhs
).to(torch.bfloat16

return C

Note. In the example above, the tensors are row-major order, but all tensors
including the scale factors (see the reference code for more detail) will be
provided in the NT format, so column major order (e.g. M x K, N x K column-
major).

Problem Constraints and Scoring:

The ranking criteria is the geometric mean of the benchmark results. For the
grand prize, your kernel will be evaluated against the speed of light analysis
and the solution closest to the speed of light will be awarded the grand price.

The speed of light numbers provided by AMD are:

M N K time[μs]

1024 1536 7168 8.6331019

1024 4608 7168 25.8936898

6144 1536 7168 51.7775517

Untitled 5

6144 4608 7168 155.2989590

1024 7168 256 3.1671426

6144 7168 256 17.2712935

Problem shapes:

Untitled 6

